Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrew D. Bond* and John E. Davies

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.106$
Data-to-parameter ratio $=8.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Picoline

The crystal structure of 3-picoline (3-methylpyridine, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$) has been determined at 120 (2) K following in situ crystal growth from the liquid. The molecules pack in a herring-bonetype arrangement in the non-centrosymmetric space group Pna2 ${ }_{1}$.

Comment

The picolines (methylpyridines) comprise a series of empirical formula $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$, with weak intermolecular interactions and low melting points. The crystal structure of 4-picoline (4methylpyridine; m.p. 276 K) has been determined previously from a crystal grown using an elaborate modified Bridgman technique (Ohms et al., 1985). We report here the crystal structure of 3-picoline (m.p. 255 K), determined at 120 (2) K from a crystal grown in situ in a 0.3 mm glass capillary. This work forms part of a study devoted to improving techniques for determining the crystal structures of substances that are liquids at room temperature (see, for example, Bond \& Davies, 2001).

(I)

Molecules of (I) (Fig. 1) pack in a herring-bone-type arrangement in the non-centrosymmetric space group Pna2 1_{1} (Fig. 2). There are no apparent directional $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions: the closest contacts to N 1 are made by H 4 and H 5 , with geometric parameters $\mathrm{H} 4 \cdots \mathrm{~N} 1^{i}=2.77$ (3) \AA and $\mathrm{C} 4-$ $\mathrm{H} 4 \cdots \mathrm{~N} 1^{\mathrm{i}}=124(2)^{\circ}$, and $\mathrm{H} 5 \cdots \mathrm{~N} 1^{i}=2.90(2) \AA$ and $\mathrm{C} 5-$ $\mathrm{H} 5 \cdots \mathrm{~N} 1^{\mathrm{i}}=120(2)^{\circ} \quad$ [symmetry code: (i) $1.5-x, 0.5+y$, $0.5+z]$.

Experimental

The sample (99%) was obtained from the Aldrich Company and was used without further purification. The crystal was grown in a 0.3 mm glass capillary tube at 240 K (a temperature only slightly less than the melting point of the solid in the capillary tube) using a technique described previously (Davies \& Bond, 2001). The crystal was cooled subsequently to 120 (2) K for data collection. The length of the cylindrical crystal was not estimated, but it exceeded the 0.35 mm collimator diameter.

Received 11 October 2001
Accepted 16 October 2001 Online 20 October 2001

Figure 1
The molecular structure and atom-labelling scheme for (I) showing displacement ellipsoids at 50% probability for non-H atoms ($X P$; Sheldrick, 1993).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$

$M_{r}=93.13$
Orthorhombic, Pna2 $_{1}$
$a=9.3516$ (9) \AA 。
$b=9.7925(10) \AA$
$c=5.7651(3) \AA$
$V=527.94(8) \AA^{3}$
$Z=4$
$D_{x}=1.172 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 3581
reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Cylinder, colourless
0.15 mm (radius)

Data collection

Nonius KappaCCD diffractometer
Thin-slice ω and φ scans
Absorption correction: none
2718 measured reflections
665 independent reflections 643 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 8$
$k=-9 \rightarrow 12$
$l=-6 \rightarrow 7$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.106$
$S=1.08$
665 reflections
82 parameters
H atoms treated by a mixture of independent and constrained refinement

H atoms on the pyridyl ring were located in difference Fourier maps and were allowed to refine with independent isotropic displacement parameters. Methyl H atoms were placed geometrically and refined with one common isotropic displacement parameter, with the methyl group allowed to rotate about its local threefold axis. Friedel pairs (478) were aver-

Figure 2
Projection of (I) onto (001) showing the herring-bone packing arrangement (CAMERON; Watkin et al., 1996).
aged prior to merging of data in $\mathrm{Pna2}_{1}$; the reported value of $R_{\text {int }}$ corresponds to subsequent merging of equivalent reflections in this space group.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL, DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC for financial assistance towards the purchase of the Nonius CCD diffractometer.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.
Bond, A. D. \& Davies, J. E. (2001). Acta Cryst. E57, o1039-o1040.
Davies, J. E. \& Bond, A. D. (2001). Acta Cryst. E57, o947-o949.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Ohms, U., Guth, H., Treutmann, W., Dannöhl, H., Schweig, A. \& Heger, G. (1985). J. Chem. Phys. 83, 273-279.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter and R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

